請教Peskin書上K-G場二次量子化的一個問題

xzhweng

来自: xzhweng(nobody)
2014-03-29 17:47:48

×
加入小组后即可参加投票
  • [己注销]

    [己注销] (hæfþ begunen) 2014-03-29 18:23:24

    看看a是怎么定义的.

  • Genus_G

    Genus_G (没水准) 2014-03-29 18:30:08

    没太理解问题在哪里,不是在[;\omega_p;]里面么

  • [己注销]

    [己注销] (hæfþ begunen) 2014-03-29 18:58:58

    找回谐振子a的定义, 我记得m就在a的系数里头

  • xzhweng

    xzhweng (nobody) 楼主 2014-03-29 19:01:39

    @瓂鴮騦 沒給出 [;a;] 的公式,書上是和諧振子對比得到 [;\phi(x);] 和 [;\pi(x);] 的公式。 @Belanov 主要問題是(2.31)式推到一半退不下去了: \begin{split} H & = \cdots\\ &= \int\frac{\mathrm d^3p\mathrm d^3p'}{(2\pi)^3}\delta(p+p')\{\cdots\} \\ &= \int\frac{\mathrm d^3p}{(2\pi)^3}\left\{-\frac{\omega_p}{4}(a_p-a_{-p}^\dagger)(a_{-p}-a_p^\dagger)\\ +\frac{p^2+m^2}{4\omega_p}(a_p+a_{-p}^\dagger)(a_{-p}+a_p^\dagger)\right\} \\ &= ? \end{split} 主要是 \[ \frac{p^2+m^2}{4\omega_p} \] 不知道該怎麼處理。

  • Genus_G

    Genus_G (没水准) 2014-03-29 19:01:44

    看一下Formula 2.22吧

  • Genus_G

    Genus_G (没水准) 2014-03-29 19:03:11

    前一个是和諧振子對比得到 [;\phi(p);] 和 [;\pi(p);] 的公式,再用傅里叶变换倒回来

  • xzhweng

    xzhweng (nobody) 楼主 2014-03-29 19:03:48

    看一下Formula 2.22吧 看一下Formula 2.22吧 Genus_G

    哦,我太粗心了。謝謝。

  • [已注销]

    [已注销] 2014-03-29 19:33:30

    [内容不可见]

  • int cmp

    int cmp (const void*, const void*) 2014-03-29 20:57:47

    看起来地球人都卡在 2.31 了 :-D

  • [已注销]

    [已注销] 2014-03-29 21:54:05

    看起来地球人都卡在 2.31 了 :-D 看起来地球人都卡在 2.31 了 :-D int cmp

    [内容不可见]

  • Jang

    Jang 2014-03-29 23:10:31

    估计你2.56要卡

  • Everett

    Everett (╮(╯▽╰)╭~(= ̄ U  ̄=)~) 组长 2014-03-30 07:14:10

    1. m在$\omega_p$里面:$\omega_p^2=p^2+m^2$这样 2. (2.31)第二个等号用的是Fourier transform $\int dx e^{i(p+p')x}=\delta(p+p')$,然后积掉p'即可,然后约分消去$\omega_p$

  • Everett

    Everett (╮(╯▽╰)╭~(= ̄ U  ̄=)~) 组长 2014-03-30 07:15:43

    @瓂鴮騦 沒給出 [;a;] 的公式,書上是和諧振子對比得到 [;\phi(x);] 和 [;\pi(x);] 的公式。 @瓂鴮騦 沒給出 [;a;] 的公式,書上是和諧振子對比得到 [;\phi(x);] 和 [;\pi(x);] 的公式。 @Belanov 主要問題是(2.31)式推到一半退不下去了: \begin{split} H & = \cdots\\ &= \int\frac{\mathrm d^3p\mathrm d^3p'}{(2\pi)^3}\delta(p+p')\{\cdots\} \\ &= \int\frac{\mathrm d^3p}{(2\pi)^3}\left\{-\frac{\omega_p}{4}(a_p-a_{-p}^\dagger)(a_{-p}-a_p^\dagger)\\ +\frac{p^2+m^2}{4\omega_p}(a_p+a_{-p}^\dagger)(a_{-p}+a_p^\dagger)\right\} \\ &= ? \end{split} 主要是 \[ \frac{p^2+m^2}{4\omega_p} \] 不知道該怎麼處理。 ... xzhweng

    用 $\omega_p^2=p^2+m^2$处理,所以 $\frac{p^2+m^2}{\omega_p}=\omega_p$

  • babysoul

    babysoul 2014-03-30 20:26:12

    \begin{eqnarray*} H & = & \int d^{3} x \left[ \frac{1}{2} \pi^{2} + \frac{1}{2} ( \nabla \phi )^{2} + \frac{1}{2} m^{2} \phi^{2} \right]\\ \phi ( x,t ) & = & \int \frac{d^{3} p}{( 2 \pi )^{3}} e^{i p x} \phi ( p,t )\\ \phi ( x ) & = & \int \frac{d^{3} p}{( 2 \pi )^{3}} \frac{1}{\sqrt{2 \omega_{p}}} ( a_{p} +a_{-p}^{\dagger} ) e^{ipx}\\ \pi ( x ) & = & \int \frac{d^{3} p}{( 2 \pi )^{3}} ( -i ) \sqrt{\frac{\omega_{p}}{2}} ( a_{p} -a_{-p}^{\dagger} ) e^{ipx}\\ \nabla \phi & = & \int \frac{d^{3} p}{( 2 \pi )^{3}} \frac{1}{\sqrt{2 \omega_{p}}} ( a_{p} +a_{-p}^{\dagger} ) \nabla_{x} ( e^{ipx} )\\ & = & i \int \frac{d^{3} p}{( 2 \pi )^{3}} \frac{p}{\sqrt{2 \omega_{p}}} ( a_{p} +a_{-p}^{\dagger} ) e^{ipx}\\ H & = & \int d^{3} x \left[ \frac{1}{2} \pi^{2} + \frac{1}{2} ( \nabla \phi )^{2} + \frac{1}{2} m^{2} \phi^{2} \right]\\ & & \text{Substitute $\pi$, $\nabla \phi$ and $\phi$ respectively}\\ & = & \int d^{3} x \left[ \frac{1}{2} \left( \int \frac{d^{3} p}{( 2 \pi )^{3}} ( -i ) \sqrt{\frac{\omega_{p}}{2}} ( a_{p} -a_{-p}^{\dagger} ) e^{ipx} \right)^{2} + \frac{1}{2} \left( i \int \frac{d^{3} p}{( 2 \pi )^{3}} \frac{p}{\sqrt{2 \omega_{p}}} ( a_{p} +a_{-p}^{\dagger} ) e^{ipx} \right)^{2} + \frac{1}{2} m^{2} \left( \int \frac{d^{3} p}{( 2 \pi )^{3}} \frac{1}{\sqrt{2 \omega_{p}}} ( a_{p} +a_{-p}^{\dagger} ) e^{ipx} \right)^{2} \right]\\ & & \text{The square of an integral: $\left( \int dp \right)^{2} = \int d p \int d p'$}\\ & = & - \int d^{3} x \frac{1}{( 2 \pi )^{6}} \int d^{3} p \int d^{3} p' \frac{\sqrt{\omega_{p} \omega_{p'}}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{p'} -a_{-p'}^{\dagger} ) e^{i ( p+p' ) x}\\ & & - \int d^{3} x \frac{1}{( 2 \pi )^{6}} \int d^{3} p \int d^{3} p' \frac{pp'}{4 \sqrt{\omega_{p} \omega_{p'}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{p'} +a_{-p'}^{\dagger} ) e^{i ( p+p' ) x}\\ & & + \int d^{3} x \frac{1}{( 2 \pi )^{6}} \int d^{3} p \int d^{3} p' \frac{m^{2}}{4 \sqrt{\omega_{p} \omega_{p'}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{p'} +a_{-p'}^{\dagger} ) e^{i ( p+p' ) x}\\ & = & \int d^{3} x \int d^{3} p d^{3} p' \frac{e^{i ( p+p' ) x}}{( 2 \pi )^{6}} \left\{ - \frac{\sqrt{\omega_{p} \omega_{p'}}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{p'} -a_{-p'}^{\dagger} ) + \frac{m^{2} -pp'}{4 \sqrt{\omega_{p} \omega_{p'}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{p'} +a_{-p'}^{\dagger} ) \right\} \\ & & \text{Change the order of integrals to integrate over $x$ first}\\ & = & \int d^{3} p d^{3} p' \left\{ - \frac{\sqrt{\omega_{p} \omega_{p'}}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{p'} -a_{-p'}^{\dagger} ) + \frac{m^{2} -pp'}{4 \sqrt{\omega_{p} \omega_{p'}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{p'} +a_{-p'}^{\dagger} ) \right\} \int d^{3} x \frac{e^{i ( p+p' ) x}}{( 2 \pi )^{6}}\\ & & \text{Fourier transform leads to $\delta$-function}\\ & = & \int d^{3} p d^{3} p' \left\{ - \frac{\sqrt{\omega_{p} \omega_{p'}}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{p'} -a_{-p'}^{\dagger} ) + \frac{m^{2} -pp'}{4 \sqrt{\omega_{p} \omega_{p'}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{p'} +a_{-p'}^{\dagger} ) \right\} \frac{\delta ( p+p' )}{( 2 \pi )^{3}}\\ & & \text{Integrating over $p'$, the remaining terms statisfies $p' \rightarrow -p$ due to $\delta$-function}\\ & = & \frac{1}{( 2 \pi )^{3}} \int d^{3} p^{} \left\{ - \frac{\sqrt{\omega_{p} \omega_{-p}}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{-p} -a_{p}^{\dagger} ) + \frac{m^{2} +p^{2}}{4 \sqrt{\omega_{p} \omega_{-p}}} ( a_{p} +a_{-p}^{\dagger} ) ( a_{-p} +a_{p}^{\dagger} ) \right\}\\ & & \text{Since $\omega_{p} = \sqrt{p^{2} +m^{2}}$, we have $\omega_{-p} \rightarrow \omega_{p}$ for each $\omega_{-p}$ and $m^{2} +p^{2} \rightarrow \omega_{p}^{2}$ for the 2nd term} \\ & = & \frac{1}{( 2 \pi )^{3}} \int d^{3} p^{} \left\{ - \frac{\omega_{p}}{4} ( a_{p} -a_{-p}^{\dagger} ) ( a_{-p} -a_{p}^{\dagger} ) + \frac{\omega_{p}}{4} ( a_{p} +a_{-p}^{\dagger} ) ( a_{-p} +a_{p}^{\dagger} ) \right\}\\ & & \text{Expansion and simplification}\\ & = & \frac{1}{( 2 \pi )^{3}} \int d^{3} p^{} \frac{\omega_{p}}{2} ( a_{p} a_{p}^{\dagger} +a_{-p}^{\dagger} a_{-p} )\\ & = & \frac{1}{( 2 \pi )^{3}} \int d^{3} p^{} \frac{\omega_{p}}{2} ( a_{p} a_{p}^{\dagger} +a_{p}^{\dagger} a_{p} )\\ & & \text{Use commutation $a_{p} a_{p}^{\dagger} \rightarrow [ a_{p} ,a_{p}^{\dagger} ] -a_{p}^{\dagger} a_{p}$}\\ & = & \frac{1}{( 2 \pi )^{3}} \int d^{3} p^{} \omega_{p} \left( \frac{1}{2} [ a_{p} ,a_{p}^{\dagger} ] +a_{p}^{\dagger} a_{p} \right) \end{eqnarray*}

  • babysoul

    babysoul 2014-03-30 20:39:16

    写错了,倒数第二步对易关系是+ $a_{p} a_{p}^{\dagger} \rightarrow [ a_{p},a_{p}^{\dagger} ] +a_{p}^{\dagger} a_{p}$

  • xzhweng

    xzhweng (nobody) 楼主 2014-03-30 21:37:40

    写错了,倒数第二步对易关系是+ $a_{p} a_{p}^{\dagger} \rightarrow [ a_{p},a_{p}^{\dagger} 写错了,倒数第二步对易关系是+ $a_{p} a_{p}^{\dagger} \rightarrow [ a_{p},a_{p}^{\dagger} ] +a_{p}^{\dagger} a_{p}$ ... babysoul

    哈哈,你居然把整個過程都寫出來……

  • babysoul

    babysoul 2014-03-30 22:02:56

    哈哈,你居然把整個過程都寫出來…… 哈哈,你居然把整個過程都寫出來…… xzhweng

    看E大给的提示。用TeXmacs写挺容易的,直接在上面演算,然后导出LaTeX贴出来就好了

你的回应

回应请先 , 或 注册

49260 人聚集在这个小组
↑回顶部