机器学习 正则化相关
一、概括:
L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。
对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归
L1正则假设参数的先验分布是Laplace分布,可以保证模型的稀疏性,也就是某些参数等于0;
L2正则假设参数的先验分布是Gaussian分布,可以保证模型的稳定性,也就是参数的值不会太大或太小
二、区别:
1.L1是模型各个参数的绝对值之和。
L2是模型各个参数的平方和的开方值。
2.L1会趋向于产生少量的特征,而其他的特征都是0.
因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵
L2会选择更多的特征,这些特征都会接近于0。
最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0
三、再讨论几个问题
1.为什么参数越小代表模型越简单?
越是复杂的模型,越是尝试对所有样本进行拟合,包括异常点。这就会造成在较小的区间中产生较大的波动,这个较大的波动也会反映在这个区间的导数比较大。 只有越大的参数才可能产生较大的导数。因此参数越小,模型就越简单。
2.实现参数的稀疏有什么好处?
因为参数的稀疏,在一定程度上实现了特征的选择。一般而言,大部分特征对模型是没有贡献的。这些没有用的特征虽然可以减少训练集上的误差,但是对测试集的样本,反而会产生干扰。稀疏参数的引入,可以将那些无用的特征的权重置为0.
3.L1范数和L2范数为什么可以避免过拟合?
加入正则化项就是在原来目标函数的基础上加入了约束。当目标函数的等高线和L1,L2范数函数第一次相交时,得到最优解。
L1范数:
L1范数符合拉普拉斯分布,是不完全可微的。表现在图像上会有很多角出现。这些角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。
L2范数:
L2范数符合高斯分布,是完全可微的。和L1相比,图像上的棱角被圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,可以是参数不断趋向于0.最后活的很小的参数。
偶得茶馆的最新日记 · · · · · · ( 全部 )
- 数学,是科学吗? (1人喜欢)
- AI大模型蒸馏技术 (1人喜欢)
- 初三,春节,小雨,写一首诗(三版本) (1人喜欢)
- 抽象代数的域扩张 (1人喜欢)
- 搜索算法 (1人喜欢)
热门话题 · · · · · · ( 去话题广场 )
-
加载中...