green light
现在是2019年4月4日星期四,北京时间9时17分。
最近在想这么一道题

要确认结论为真并不难,但要步骤清晰地写出证明过程,还挺费思量的。
如果是我,可能会列竖式除法,就是笔算除法。
因为插入公式很麻烦,就简单说一下。
以1/7为例吧,要证明小数循环,其实就是证明每一次加0之后除出来的余数循环:
1加0成10,10除7余3,
3加0成30,30除7余2,
2加0成20,20除7余6,
6加0成60,60除7余4,
4加0成40,40除7余5,
5加0成50,50除7余1,
1加0成10,10除7余3
……
一直算到循环,肯定不是证明。
证明可以如下:
用7给所有正整数分类,总共可分成七类:
余1的叫一类数,
余2的叫二类数,
余3的叫三类数,
余4的叫四类数,
余5的叫五类数,
余6的叫六类数,
能整除的叫七类数。
余数加0肯定是七类数之一,余数肯定是在1、2、3、4、5、6六个数之间。
而且余数一旦重复,就不可能再成为别的数,所以循环节最长也只能是6。
这个道理,不只对1/7成立,对a/7也成立,同理还可证,对a/b也成立。
分数一定可写成有限循环小数,反过来成立吗,有限循环小数一定能写成分数吗?
比方说0.111222111222111222……,循环节为“111222”,这样的小数能写成分数吗?
先把这问题放这。
之前写《了不起的盖茨比》时,写到“green light”写到“false glimmer”,应该把小说结尾也附上的:
And as I sat there brooding on the old, unknown world, I thought of Gatsby's wonder when he first picked out the green light at the end of Daisy's dock.
He had come a long way to this blue lawn, and his dream must have seemed so close that he could hardly fail to grasp it. He did not know that it was already behind him, somewhere back in that vast obscurity beyond the city, where the dark fields of the republic rolled on under the night.
Gatsby believed in the green light, the orgastic future that year by year recedes before us. It eluded us then,but that's no matter to-morrow we will run faster, stretch out our arms farther. . . . and one fine morning we beat on, boats against the current, borne back ceaselessly into the past.
想起布袋和尚的偈子:手把青秧插满田,低头便见水中天。六根清静方为道,退步原来是向前。
当然,盖茨比的行为其实是反过来的,进步原来是向后。
又,在菲茨杰拉德的时代,to-day和to-morrow,中间要加小短横,这也是时代变迁。
还没人转发这篇日记