没有免费的午餐定理(No Free Lunch Theorem)
在机器学习领域,NFL的意义在于告诉机器学习从业者: 假设所有数据的分布可能性相等,当我们用任一分类做法来预测未观测到的新数据时,对于误分的预期是相同的。
简而言之,NFL的定律指明,如果我们对要解决的问题一无所知且并假设其分布完全随机且平等,那么任何算法的预期性能都是相似的。
这个定理对于“盲目的算法崇拜”有毁灭性的打击。例如,现在很多人沉迷“深度学习”不可自拔,那是不是深度学习就比其他任何算法都要好?在任何时候表现都更好呢?
未必,我们必须要加深对于问题的理解,不能盲目的说某一个算法可以包打天下。然而,从另一个角度说,我们对于要解决的问题往往不是一无所知,因此大部分情况下我们的确知道什么算法可以得到较好的结果。
举例,我们如果知道用于预测的特征之间有强烈的相关性(strong dependency),那么我们可以推测Naive Bayes(简单贝叶斯分类器)不会给出特别好的结果,因为其假设就是特征之间的独立性。
-
无能狂怒人 赞了这篇日记 2019-11-29 04:55:04