广义线性模型
多重线性回归(multiple linear regression)是用回归方程描述一个因变量与多个自变量的依存关系,简称多重回归,其基本形式为:Y= a + bX1+CX2+***+NXn
logistic回归(Logistic regression) 与多重线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归,如果是poisson分布,就是poisson回归,如果是负二项分布,就是负二项回归。
logistic回归的因变量可以是二分非线性差分方程类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释。所以实际中最为常用的就是二分类的logistic回归。
如果已经建立了logistic回归模型,则可以根据模型,预测在不同的自变量情况下,发生某种情况的概率有多大。
Logistic Regression和Linear Regression的原理是相似的,可以简单的描述为这样的过程:
(1)找一个合适的预测函数,一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程是非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。
(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。
(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法(梯度下降法)。
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。
梯度下降法及其各种变体为目前机器学习(包括神经网络)中使用最多的优化算法。其不仅能够有效处理凸函数优化问题,还能够对非常复杂的非凸函数(如神经网络),进行优化。
类似的优化算法还有共轭梯度法,牛顿法,拟牛顿法等一系列迭代优化算法,这些新的算法虽然原理上很快,但是都有一些适用范围,没有梯度下降法更具普适性。比如牛顿法在处理具有奇点的目标函数时可能无法收敛。