摘抄-无论强人工智能能否出现,人类的未来注定灰暗
今天我们说的所谓强人工智能这个词,也是60、70年代的产物
严格来说,深度学习并不是新技术,它的基础仍然是神经网络算法。还是80年代,神经网络算法已经成熟(其实50年代就出现了),那是人工智能投入的高发年代,大量科学家,研究生投入这一领域,可惜效果长期无法达到真正可用,最终只有少数几个特殊场景可以成功应用。到90年代开始,这个领域失去了大多数关注和经费。最近10年,这一门派的算法继续演变成今天的深度学习,这一次,他们成功了。 ----理论先行
为什么一个80年代差点被放弃的方法重新回到了世界中心?因为80年代虽然可以完成理论基础,但真正到达实用所需要的数据和计算能力都不具备。这几十年,随着互联网的发展,芯片价格下降,并行计算发展,以前的困难已经不再是问题。除了数据的数量极多,更重要的是,因为智能手机和各种传感器的普及,我们可以获得的数据种类也远远多于80年代,从而可以在更多领域进行尝试。 ----计算力/成本、通讯难易/距离/成本、信息获取范围/深度/成本
危险的来源并非人工智能算法进一步提升,而是因为我们提供出数据越多,被限制和引导的机会也就越大 -----提供个人数据
如果运算能力足够,让用户“多花点钱”这个目标,还可以做的精细很多。比如,在用户把东西加入购物车,付款之前,能不能找到一个功能类似、价格接近但利润率更高的商品,推荐给用户?推荐之后,能不能给他一些应该放弃之前的商品,转买这个商品的理由–比如有多少比例的人认为这个更好,或者,他的好友有多少人赞过它,甚至是,最近这个东西正在特价,是历史最低价。之后,用户买或者不买,都是一次反馈,系统会收集这种反馈,下次让推荐方案变得更适合这个用户。每一次重复这个过程,都可以帮助人工智能系统提高一点点,而一个人的行为产生的数据,又可以用于影响他的好友。
这个过程还可以做的更好,比如,用户加进购物车但没有买的商品,如果降价20%会不会促进他立刻购买?如果不行的话,把价格涨回去,会不会让他觉得后悔,那么下次再降价15%,是不是立刻就买了?随着我们把更多的数据联网,分析用户行为的依据会更明显。比起过去,人们开始把越来越多的生物数据联网,心跳,血压…有了这些参数,之前的流程又可以发生一些变化,当降价20%的时候,用户的生物特征会不会改变,比如,心跳加速?如果再涨价,生物特征又会如何变化。系统能不能从这些生物数据变化中分析出哪些是兴奋,哪些是遗憾?如果涨价之后用户感觉到遗憾,下次再降价15%,很可能会促成一次购买。这已经我们训练程序,而是程序训练我们。经过这种训练之后,下一次降价20%的时候,用户可能就会立刻购买,用户的行为模式改变了,这就是人被程序训练的结果。
这是一个相对直观的例子,我们可以推测出一些理由和可以用语言表示的规则
就算是这个黑盒子的拥有者甚至创造者,也难以穷尽所有可能,知道它到底对每一个人到底做了什么 ---人工智能会变成黑盒子
在今天它们随处可见,用户并不觉得它们珍贵 ---用户的任意微小行为都会成为数据
赛博朋克之后------那时候人们就会有更多行为会按照人工智能程序所规定的方式进行,并且,还会发自内心的认为那是他独立自主的产生想法
人会完全会成为程序的终端,为程序贡献数据,按照程序引导产生行为,依赖程序生活和工作。
试图停止美国政府收集数据的行为很可能会被认为是叛国。这个时代还勉强可以出现斯诺登这种出乎意料的案例,斯诺登拥有权限,但他利用这种权限,做出了对整个系统不利的事。未来,所有人都会生活在系统划定的规范之下,并且所有数据都被监控和计算,未来的斯诺登开始收集那些文档的时候,他的异常行为就会被系统发现,立即中止。也许,人类唯一的希望就寄托在各种寻找漏洞的黑客身上了吧。
模拟退火算法---不懂