从惊讶到思考(12)
第六章 关于时间的悖论
从微小的基本粒子到巨大的星系,整个宇宙都处于永恒的变化之中,它那令人难以置信的因果每一微秒都在时间的无情流逝中变化着。没有人能想象出一个没有时间的真实世界。一个只亦在0秒钟的客观物体根本就不存在。幸好,时间是在均匀地流逝着,因而可以测量,伴随着测量,便有了数和方程。纯粹数学也许被当作是“没有时间的”,但是在应用数学中,从简单的代数到微积分以至更深的领域,大量问题都是以时间为基本变量的。
这一章集中了多种多样有关时间和运动的悖论。其中有些,如基诺悖论是古希腊人争论不休的,另外一些如时间“延迟”是相对论中的悖论,而以完成“超级任务”为己任的所谓无穷大机器则是本世纪的产物。关于时间的悖论很多,这里只能介绍一小部分,不过,我们选入的材料会引起极大的好奇心,相信它们能大大激发学生的兴趣。
其中最能从中激发学生深入重要的数学领域的是:
自行车轮悖论涉及旋轮线,绝妙地介绍了比二次曲线更为复杂的几何曲线。
滑雪者的挫折形象地说明简单的代数能够轻易地证明一个意料之外的普遍结果。
基诺悖论、橡皮绳、超级任务、奔波的小狗都介绍了极限概念,对理解微积分和一切高等数学有重要意义。
上述悖论也介绍了两种无穷大之间的重要差别:计数的数的无穷大(乔治·康妥称之为阿列夫零),和在一条线上的点的无穷多(康妥称之为阿列夫1,“连续统的势”)。
橡皮绳上的蠕虫用一个著名的级数——调和级数给出了最好的解答。这是学生们在继续学习数学中要多次碰到的。
关于时间倒流、快子、时间旅行等悖论介绍了一些对理解相对论很重要的基本概念。这些悖论会使学生们特别感兴趣,因为它们与很多科学幻想故事有关。
这些说明中,通过假定使时间进程分杈和出现平行的世界来避免时间旅行引起的矛盾,从而向学生介绍粒子物理中最令人兴奋的一个发展:量子力学的“多世界解释”。这个理论现在正在所谓“反文明的物理学家”中广泛讨论,这些物理学家有点想入非非,“进入”了“灵感的空间”。
最后一段是关于决定论和非决定论的,它让人初窥到哲学中一个永无休止的争论问题。它看起来远不像数学问题,但是这个关于预测未来的问题却是数学中的一个分支——“决策理论”中不可回避的问题,而且它至今还未得到解决。
1.卡罗尔关于坏钟的悖论
M:有两台钟,一台每天慢一分钟,另一台根本不走,哪一台报时准些?
M:刘易斯·卡罗尔作如下论证——
刘易斯:一天慢一分的那台钟每两年才对一次,不走的那台钟每24小时就对了两次,所以对报时而言不走的那台钟报时好些,你赞成吗?
M:艾丽斯感到迷惑不解。
艾丽斯:我知道不走的那台钟每到8点时就对了,可我怎么知道什么时侯就正好是8点呢?
刘易斯:哦,那很容易解决。你只要手中拿一支枪,站在停着的钟旁。
刘易斯:眼睛死死盯着那台钟,在钟恰好对准的时刻立即开枪,听到枪响的每一个人就都知道这时是8点正。
刘易斯·卡罗尔是查尔斯·L·道奇森的笔名,他在英国牛津大学的一个学院——基督教堂教学。他这两台钟的故事收在刘易斯全集中,而且他的很多其他文集中也有涉及。
如果你的学生中有人怀疑那台走着的钟要两年才对一次,他们就想要证实这一点。因为这台钟一天慢一分,但它要在慢了12小时时才又对准,这就需要720天时间。
2.迷惑人的车轮
M:刘易斯·卡罗尔对钟的诡辩只不过是没有意思的笑话,可这车轮却另当别论。你可曾知道自行车轮子的顶部要比底部跑得快?
M:那就是当自行车擦身而过时车轮上部的辐条看不清楚的原因。
M:当车轮滚动时,让我们看看轮上的两个点。接近轮顶的点A走过的路程比接近轮底的点B远得多,速度是单位时间内走过的路程,所以点A走得远比B快,对吗?
在我们将滚动的车轮上下两部分的速度作比较时,自然是指它们对地面的速度。说明这个悖论的最好方法、是向你的学生介绍著名的旋轮线。这个曲线是当一个车轮沿一条直线滚动时,车轮边缘上任意一点所描绘出的曲线。当一点触及地面时,它的速度为零。车轮滚动,这一点的速度加快,一直到它在轮顶时达到最大。然后,它又减速,减到它再次触及地面时,速度又降到零。如果是一个有凸缘的车轮,譬如火车的轮子,凸缘上的一点在低于车轨时,它实际上是向后运动,画出一个小圈。
旋轮线具有很多美丽的数学性质和机械性质,这在《科学美国人》第六本数学游戏一书的第十三章“旋轮线,几何学的皇后”中介绍过。这一章还介绍了如何用咖啡罐头盒来做一个简单的装置的方法,这个装置类似一个滚动轮,它可以在一张纸上描出旋轮线。制作这个装置对学生是个极好的锻炼,用代数方法分析这个曲线是解析几何中的重要练习。
在还没有汽车的时候,四轮马车和二轮马车是常见的交通工具,车轮上部快速运动的辐条模糊不清的景象是人们熟悉的。当画家如漫画家想要表现具有大辐条的车轮运动时,他们往往只要画出车轮下部的车条就行了。
3.滑雪者的挫折
甲:真是一个滑雪的大好天气!我真希望这次爬坡滑行能超过每小时5公里(实际上只有每小时5公里)。
M:如果这个滑雪者想把他上坡下坡往返全程的平均速度提高到每小时10公里,那么他下坡必须要多快才行?
M:每小时15公里?60?100?叫人有点不敢相信,只有一个办法能让他把平均速度提高到每小时10公里,就是在零秒钟内下到坡底。
你的学生最初也许以为这个悖论取决于斜坡的距离,岂知这个变量与我们的问题无关。滑雪者用某个速度滑上坡一段距离。他在下坡时想要使他往返全程的平均速度加倍。可是,要做到这一点,他就须在上坡所花的时间内滑行原来距离的两倍。很明显,这就是要他根本不用一点时间就滑到坡底。这是办不到的,所以没有任何办法能使他把平均速度从每小时5公里提高到每小时10公里。
很容易用代数方法证明这个普遍结果。令x公里为沿斜坡从坡顶到坡底之间的距离,y小时为上坡用的时间,z公里/小时为上坡的速度。因此,
x=yz
假定滑雪者在k小时内下坡,并使他往返全程的速度加倍。那么平均速度就是2z公里/小时,他在(y+k)小时内滑行2x公里。所以我们得方程:
2x/(y+k)=2z
在上面的方程中用yz代x,简化得到
y=y+k
k=0
不管他上坡的距离长短,或者他上坡的速度是多快,只要他想使往返全程的平均速度加快一倍,他就必须不用时间就下到坡底。换言之,他的速度须是无穷大。
4.基诺悖论
M:古希腊人设想出了很多关于时间和运动的悖论.最著名的一个是基诺关于跑步人的诡论。
M:基诺的跑步人作如下推理。
甲:在我达到终点线之前,我必须经过中点。然后.我必须跑到3/4处,它是剩下距离的—半。
甲:而在我跑完最后的1/4这段路之前,我必须跑到这段路的中点。因为这些中点是没有止境的,我将根本不能达到终点。
M:假定跑步人每跑一半要一分钟。绘出的时间—距离关系图表明他是如何越来越接近终点,而绝不会达到终点的。他的论据对吗?
M:不对,因为跑步人不是每跑半截都用1分钟。每跑一半所花的时间都是前一段时间的一半。他只要两分钟就可以到达终点,只不过他须通过无穷多个中点而已。
M:基诺设计出一条关于阿基里斯的悖论。这个战士想要捉住一公里外的一只海龟。
M:当阿基里斯跑到海龟原来所在点时,海龟已向前爬了10米。
M:但是当阿基里斯跑到10米处时,海龟又爬到前面去了。
海龟:你别想抓住我,老朋友。只要你一到我原先所在的地方,我就已经跑到前面一截;了,那怕这个距离比头发丝还小。
M:基诺当然知道阿基里斯能够捉住海龟。他不过是显浅的说明,在把时间和空间看成是由一连串的离散点组成,就像一串念珠前后相连那样时,会引起怎样令人迷惑的结果。
在这两个悖论中,我们必须把两个跑步人都等价地看作沿一条直线作匀速运动的点。基诺之道由A向B运动的点确实到达了B点。他这两个悖论的设计显示出,当一个人试图把直线分为若干分离的点,这些点一个个依次往下排列,同时再把时间分成前后相随又互不重叠的间隔,并以此来说明运动时,会碰到怎样的困难。
像我们在上一组画面中那样,仅仅说明跑步人能够到达B点,是因为他每跑一个新半截所需的时间是跑前段路时间的一半,这还不能使基诺满意。他总是答道,就如在直线上总有—个新的中点要跑到一样,时间也总有新的半刻要经过。简言之,基诺用于直线上的论点也可以用到时间的序列上来。虽说时间可以越来越接近两分钟,但总还有一段无限小的时间瞬息要通过。阿基里斯和海龟的悖论也都是一样的道理。在无穷进程中的每一步,都还有一个没完没了的“下—步”要做,在空间和时间两方面都如此。
很多科学的哲学家都同意罗素对基诺悖论所作的著名讨论,这发表在他的《我们对外部世界的知识》一书的第六讲中。罗素指出,基诺悖论只有到乔治·康妥之后才能有效地解答。在十九世纪建立了他的无穷集理论。康妥证明了,一条直线段上的点数(或一个有限的时间区间内的间隔),是“不可数的”,这就是说不能把它们和计数用数一一对应,如果说基诺的跑步人总有更多的点要数,那么他是数不完的,跑步人也就到不了终点。可那些点是不可数的。学生们如果想更多地了解基诺悖论的旨趣,最好是参考韦斯勒·C·萨蒙编辑的一个平装文集:《基诺悖论集》。
5.蠕虫与橡皮绳悖论
M:这是基诺未能想出来的又一个悖论。一条蠕虫在橡皮绳的一端。橡皮绳长一公里。
M:蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行。在1秒钟之后,橡皮绳就像橡皮筋一样拉长为2公里。再过一秒钟后,它又拉长为3公里,如此下去。蠕虫最后究竟会不会达到终点呢?
M:根据直觉你会说:蠕虫绝不能爬到终点。可是,它爬到了。试试看,你是否能算出蠕虫要爬多远。
理解这个问题的关键是橡皮绳的伸长是均匀的。这意味着蠕虫随着拉伸也向前挪了。
1公里有100,000厘米,所以在第一秒末,蠕虫爬行了橡皮绳长度的1/100000。在第二秒钟内,蠕虫又在长度为2公里的橡皮绳上爬了它的1/200000,在第三秒内,它又爬了3公里长的皮筋的1/300000,如此继续,蠕虫的进程表示为整条橡皮绳的分数就是:
1/100000(1+1/2+1/3+...)
括弧里的级数是人们熟悉的调和级数。由于这个级数是发散的,它的部分和我们要它有多大,就可以有多大。只要这个和超过100,000,上面的表达式就超过1。这就是说,蠕虫已经到达终点。此时调和级数该部分和的项数n就是蠕虫爬行的秒数.也是皮筋最后长度的公里数。
n的值近似等于e^100000
精确的公式及其推导方法,参见《美国数学月刊》1971年第78卷十月号,第864—870页,博斯和伦奇的文章“调和级数的部分和”。结果证明,橡皮绳其长无比,比已知的宇宙直径还长得多,同时蠕虫要爬到终点的时间也无比漫长,它比已知的宇宙年龄还要远久得多。自然,这个问题说的是一条理想的蠕虫,它可以表示为在一条理想的橡皮绳上的一个点。若是条真的蠕虫,那末在还没有怎么开始这段旅程就早已死了,同时,若也是真的橡皮绳则需把它拉得细到它只能由分隔的分子连成这样难以想象的程度。
不管这个问题的参数,即橡皮绳的长度,蠕虫爬行的速度、以及这根橡皮绳每单位时间拉长多少,蠕虫总是能在有限的时间内到达终点。真正的问题是在改变橡皮绳拉长的方式时产生的。例如,如果橡皮绳按几何级数拉长,譬如每秒钟拉长一倍,会出现什么情况?这时,蠕虫就再也不能达到终点了。
从微小的基本粒子到巨大的星系,整个宇宙都处于永恒的变化之中,它那令人难以置信的因果每一微秒都在时间的无情流逝中变化着。没有人能想象出一个没有时间的真实世界。一个只亦在0秒钟的客观物体根本就不存在。幸好,时间是在均匀地流逝着,因而可以测量,伴随着测量,便有了数和方程。纯粹数学也许被当作是“没有时间的”,但是在应用数学中,从简单的代数到微积分以至更深的领域,大量问题都是以时间为基本变量的。
这一章集中了多种多样有关时间和运动的悖论。其中有些,如基诺悖论是古希腊人争论不休的,另外一些如时间“延迟”是相对论中的悖论,而以完成“超级任务”为己任的所谓无穷大机器则是本世纪的产物。关于时间的悖论很多,这里只能介绍一小部分,不过,我们选入的材料会引起极大的好奇心,相信它们能大大激发学生的兴趣。
其中最能从中激发学生深入重要的数学领域的是:
自行车轮悖论涉及旋轮线,绝妙地介绍了比二次曲线更为复杂的几何曲线。
滑雪者的挫折形象地说明简单的代数能够轻易地证明一个意料之外的普遍结果。
基诺悖论、橡皮绳、超级任务、奔波的小狗都介绍了极限概念,对理解微积分和一切高等数学有重要意义。
上述悖论也介绍了两种无穷大之间的重要差别:计数的数的无穷大(乔治·康妥称之为阿列夫零),和在一条线上的点的无穷多(康妥称之为阿列夫1,“连续统的势”)。
橡皮绳上的蠕虫用一个著名的级数——调和级数给出了最好的解答。这是学生们在继续学习数学中要多次碰到的。
关于时间倒流、快子、时间旅行等悖论介绍了一些对理解相对论很重要的基本概念。这些悖论会使学生们特别感兴趣,因为它们与很多科学幻想故事有关。
这些说明中,通过假定使时间进程分杈和出现平行的世界来避免时间旅行引起的矛盾,从而向学生介绍粒子物理中最令人兴奋的一个发展:量子力学的“多世界解释”。这个理论现在正在所谓“反文明的物理学家”中广泛讨论,这些物理学家有点想入非非,“进入”了“灵感的空间”。
最后一段是关于决定论和非决定论的,它让人初窥到哲学中一个永无休止的争论问题。它看起来远不像数学问题,但是这个关于预测未来的问题却是数学中的一个分支——“决策理论”中不可回避的问题,而且它至今还未得到解决。
1.卡罗尔关于坏钟的悖论
M:有两台钟,一台每天慢一分钟,另一台根本不走,哪一台报时准些?
M:刘易斯·卡罗尔作如下论证——
刘易斯:一天慢一分的那台钟每两年才对一次,不走的那台钟每24小时就对了两次,所以对报时而言不走的那台钟报时好些,你赞成吗?
M:艾丽斯感到迷惑不解。
艾丽斯:我知道不走的那台钟每到8点时就对了,可我怎么知道什么时侯就正好是8点呢?
刘易斯:哦,那很容易解决。你只要手中拿一支枪,站在停着的钟旁。
刘易斯:眼睛死死盯着那台钟,在钟恰好对准的时刻立即开枪,听到枪响的每一个人就都知道这时是8点正。
刘易斯·卡罗尔是查尔斯·L·道奇森的笔名,他在英国牛津大学的一个学院——基督教堂教学。他这两台钟的故事收在刘易斯全集中,而且他的很多其他文集中也有涉及。
如果你的学生中有人怀疑那台走着的钟要两年才对一次,他们就想要证实这一点。因为这台钟一天慢一分,但它要在慢了12小时时才又对准,这就需要720天时间。
2.迷惑人的车轮
M:刘易斯·卡罗尔对钟的诡辩只不过是没有意思的笑话,可这车轮却另当别论。你可曾知道自行车轮子的顶部要比底部跑得快?
M:那就是当自行车擦身而过时车轮上部的辐条看不清楚的原因。
M:当车轮滚动时,让我们看看轮上的两个点。接近轮顶的点A走过的路程比接近轮底的点B远得多,速度是单位时间内走过的路程,所以点A走得远比B快,对吗?
在我们将滚动的车轮上下两部分的速度作比较时,自然是指它们对地面的速度。说明这个悖论的最好方法、是向你的学生介绍著名的旋轮线。这个曲线是当一个车轮沿一条直线滚动时,车轮边缘上任意一点所描绘出的曲线。当一点触及地面时,它的速度为零。车轮滚动,这一点的速度加快,一直到它在轮顶时达到最大。然后,它又减速,减到它再次触及地面时,速度又降到零。如果是一个有凸缘的车轮,譬如火车的轮子,凸缘上的一点在低于车轨时,它实际上是向后运动,画出一个小圈。
旋轮线具有很多美丽的数学性质和机械性质,这在《科学美国人》第六本数学游戏一书的第十三章“旋轮线,几何学的皇后”中介绍过。这一章还介绍了如何用咖啡罐头盒来做一个简单的装置的方法,这个装置类似一个滚动轮,它可以在一张纸上描出旋轮线。制作这个装置对学生是个极好的锻炼,用代数方法分析这个曲线是解析几何中的重要练习。
在还没有汽车的时候,四轮马车和二轮马车是常见的交通工具,车轮上部快速运动的辐条模糊不清的景象是人们熟悉的。当画家如漫画家想要表现具有大辐条的车轮运动时,他们往往只要画出车轮下部的车条就行了。
3.滑雪者的挫折
甲:真是一个滑雪的大好天气!我真希望这次爬坡滑行能超过每小时5公里(实际上只有每小时5公里)。
M:如果这个滑雪者想把他上坡下坡往返全程的平均速度提高到每小时10公里,那么他下坡必须要多快才行?
M:每小时15公里?60?100?叫人有点不敢相信,只有一个办法能让他把平均速度提高到每小时10公里,就是在零秒钟内下到坡底。
你的学生最初也许以为这个悖论取决于斜坡的距离,岂知这个变量与我们的问题无关。滑雪者用某个速度滑上坡一段距离。他在下坡时想要使他往返全程的平均速度加倍。可是,要做到这一点,他就须在上坡所花的时间内滑行原来距离的两倍。很明显,这就是要他根本不用一点时间就滑到坡底。这是办不到的,所以没有任何办法能使他把平均速度从每小时5公里提高到每小时10公里。
很容易用代数方法证明这个普遍结果。令x公里为沿斜坡从坡顶到坡底之间的距离,y小时为上坡用的时间,z公里/小时为上坡的速度。因此,
x=yz
假定滑雪者在k小时内下坡,并使他往返全程的速度加倍。那么平均速度就是2z公里/小时,他在(y+k)小时内滑行2x公里。所以我们得方程:
2x/(y+k)=2z
在上面的方程中用yz代x,简化得到
y=y+k
k=0
不管他上坡的距离长短,或者他上坡的速度是多快,只要他想使往返全程的平均速度加快一倍,他就必须不用时间就下到坡底。换言之,他的速度须是无穷大。
4.基诺悖论
M:古希腊人设想出了很多关于时间和运动的悖论.最著名的一个是基诺关于跑步人的诡论。
M:基诺的跑步人作如下推理。
甲:在我达到终点线之前,我必须经过中点。然后.我必须跑到3/4处,它是剩下距离的—半。
甲:而在我跑完最后的1/4这段路之前,我必须跑到这段路的中点。因为这些中点是没有止境的,我将根本不能达到终点。
M:假定跑步人每跑一半要一分钟。绘出的时间—距离关系图表明他是如何越来越接近终点,而绝不会达到终点的。他的论据对吗?
M:不对,因为跑步人不是每跑半截都用1分钟。每跑一半所花的时间都是前一段时间的一半。他只要两分钟就可以到达终点,只不过他须通过无穷多个中点而已。
M:基诺设计出一条关于阿基里斯的悖论。这个战士想要捉住一公里外的一只海龟。
M:当阿基里斯跑到海龟原来所在点时,海龟已向前爬了10米。
M:但是当阿基里斯跑到10米处时,海龟又爬到前面去了。
海龟:你别想抓住我,老朋友。只要你一到我原先所在的地方,我就已经跑到前面一截;了,那怕这个距离比头发丝还小。
M:基诺当然知道阿基里斯能够捉住海龟。他不过是显浅的说明,在把时间和空间看成是由一连串的离散点组成,就像一串念珠前后相连那样时,会引起怎样令人迷惑的结果。
在这两个悖论中,我们必须把两个跑步人都等价地看作沿一条直线作匀速运动的点。基诺之道由A向B运动的点确实到达了B点。他这两个悖论的设计显示出,当一个人试图把直线分为若干分离的点,这些点一个个依次往下排列,同时再把时间分成前后相随又互不重叠的间隔,并以此来说明运动时,会碰到怎样的困难。
像我们在上一组画面中那样,仅仅说明跑步人能够到达B点,是因为他每跑一个新半截所需的时间是跑前段路时间的一半,这还不能使基诺满意。他总是答道,就如在直线上总有—个新的中点要跑到一样,时间也总有新的半刻要经过。简言之,基诺用于直线上的论点也可以用到时间的序列上来。虽说时间可以越来越接近两分钟,但总还有一段无限小的时间瞬息要通过。阿基里斯和海龟的悖论也都是一样的道理。在无穷进程中的每一步,都还有一个没完没了的“下—步”要做,在空间和时间两方面都如此。
很多科学的哲学家都同意罗素对基诺悖论所作的著名讨论,这发表在他的《我们对外部世界的知识》一书的第六讲中。罗素指出,基诺悖论只有到乔治·康妥之后才能有效地解答。在十九世纪建立了他的无穷集理论。康妥证明了,一条直线段上的点数(或一个有限的时间区间内的间隔),是“不可数的”,这就是说不能把它们和计数用数一一对应,如果说基诺的跑步人总有更多的点要数,那么他是数不完的,跑步人也就到不了终点。可那些点是不可数的。学生们如果想更多地了解基诺悖论的旨趣,最好是参考韦斯勒·C·萨蒙编辑的一个平装文集:《基诺悖论集》。
5.蠕虫与橡皮绳悖论
M:这是基诺未能想出来的又一个悖论。一条蠕虫在橡皮绳的一端。橡皮绳长一公里。
M:蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行。在1秒钟之后,橡皮绳就像橡皮筋一样拉长为2公里。再过一秒钟后,它又拉长为3公里,如此下去。蠕虫最后究竟会不会达到终点呢?
M:根据直觉你会说:蠕虫绝不能爬到终点。可是,它爬到了。试试看,你是否能算出蠕虫要爬多远。
理解这个问题的关键是橡皮绳的伸长是均匀的。这意味着蠕虫随着拉伸也向前挪了。
1公里有100,000厘米,所以在第一秒末,蠕虫爬行了橡皮绳长度的1/100000。在第二秒钟内,蠕虫又在长度为2公里的橡皮绳上爬了它的1/200000,在第三秒内,它又爬了3公里长的皮筋的1/300000,如此继续,蠕虫的进程表示为整条橡皮绳的分数就是:
1/100000(1+1/2+1/3+...)
括弧里的级数是人们熟悉的调和级数。由于这个级数是发散的,它的部分和我们要它有多大,就可以有多大。只要这个和超过100,000,上面的表达式就超过1。这就是说,蠕虫已经到达终点。此时调和级数该部分和的项数n就是蠕虫爬行的秒数.也是皮筋最后长度的公里数。
n的值近似等于e^100000
精确的公式及其推导方法,参见《美国数学月刊》1971年第78卷十月号,第864—870页,博斯和伦奇的文章“调和级数的部分和”。结果证明,橡皮绳其长无比,比已知的宇宙直径还长得多,同时蠕虫要爬到终点的时间也无比漫长,它比已知的宇宙年龄还要远久得多。自然,这个问题说的是一条理想的蠕虫,它可以表示为在一条理想的橡皮绳上的一个点。若是条真的蠕虫,那末在还没有怎么开始这段旅程就早已死了,同时,若也是真的橡皮绳则需把它拉得细到它只能由分隔的分子连成这样难以想象的程度。
不管这个问题的参数,即橡皮绳的长度,蠕虫爬行的速度、以及这根橡皮绳每单位时间拉长多少,蠕虫总是能在有限的时间内到达终点。真正的问题是在改变橡皮绳拉长的方式时产生的。例如,如果橡皮绳按几何级数拉长,譬如每秒钟拉长一倍,会出现什么情况?这时,蠕虫就再也不能达到终点了。
还没人赞这篇日记
热门话题 · · · · · · ( 去话题广场 )
- 想做的事,别等“以后”1.0万+篇内容 · 534.1万次浏览
- 中年人感悟特别多726篇内容 · 310.6万次浏览
- 重新养一遍自己,可真好啊2139篇内容 · 287.9万次浏览
- 让人生变开阔的方法1.0万+篇内容 · 53.0万次浏览
- 哪个瞬间你发现自己被琐碎地爱着?397篇内容 · 102.3万次浏览
- 你有哪些“终不似,少年游”的经历?3243篇内容 · 86.7万次浏览
- 活动|体制内工作带给我的喜怒哀乐17篇内容 · 2.3万次浏览
- 我能把生活过得很好4986篇内容 · 978.9万次浏览