有关:物理的尽头是数学,数学的尽头是哲学,哲学的尽头是神学
有关“物理的尽头是数学,数学的尽头是哲学,哲学的尽头是神学”这句话
我是学数学的,发表下浅见:同意这种说法。(不过这句话出处不明,但肯定不是“三体”这本书)
物理是对客观世界的具体事物的数学描述。比如中学物理中的经典物理学有力学、光学什么的,外在世界能实实在在地感受到的东西,然后用一个数学公式来加以归纳总结。但是再往深层次研究,涉及到量子物理(物理世界的根本问题),这些东西客观世界无法感知,就不得不用纯抽象的数学来研究,所以许多理论物理学家的论文跟数学论文也没啥太大区别,基础数学中的量子群、李代数也经常被应用到物理当中来。所以说物理学的尽头是数学。
这里插一句,有的人把数学当做是物理化学等应用学科的工具,认为数学是好用的“奴隶”,这里我作为一个学数学的人提出严正抗议!数学和其他理科科学之前确实存在许多相容的地方(那是因为数学本身就是对它们最简洁最有效的描述),但是数学不仅仅是服务者,很多人会问:数学有什么用?的确,有的理论知识被研究出来,仅仅是因为体系的自我完备和相容,具体的应用前景还无法估测。打个比方,物理学家是唐僧,他到了印度取得真经就要往回走,因为目的已经达到;但是数学家可能到了西天他还要往前走,前面是什么?是不是还有我们不知道的新东西?很纯粹的探险者。你要问数学有什么用,你可能要问问你的后人。所以请不要单纯用功利化的眼光看待数学。
物理走到这里为止,接下来他就要把接力棒传给数学工作者了。因为前方的道路不是实实在在的,忽悠的说法是:脚下无路,胸中有路。因为数学就是抽象,抽象就是这个东西它什么都不是,但它又能代表很多很多东西。比如说1,你说它是1个苹果、1块饼干、1根香蕉?都不是,它就是1,一个符号而已。没学过数字的小朋友是无论如何也不会对1产生什么想法的,只有我们告诉他,我们用这个符号概括你说知的一切具有“1”的特征的东西,他才会对这个符号赋予意识。这是最简单的抽象,简单到我们都以为它很具体。(如果你问我1到底是什么?那要归结到集合论,简单说来我可以用一个特定的集合来定义1,我还可以用集合来定义所有的数字、运算等等,所以高中第一堂课,我们就学习集合,老师还说集合是数学的基础,就是因为无论什么你都能用集合来定义,当然一般人是不用纠结这个问题的。)这里我再插一句,有关哥德巴赫猜想的“1+1=2”,它也不是小学生所理解的加法。关于这个加法的证明任何一个学习过抽象代数或集合论的本科生都能给出。(有关哥德巴赫的具体内容,大家可以百度或谷歌一下,也是小学生可以理解的。)当数学的最初就跟哲学有着千丝万缕的联系,所以有人说哲学和数学是两种描述世界的方法,二者互通,也是有道理的。比如大家都熟悉的根号2,你说它是多少?1.414?差不多,但不是,1.414...恩,无限不循环小数对吧,好吧有这么一个数,你永远也无法准确说出它具体的数值(即使你巨牛无比永世长存地说出这个数值,也没有一个人能活着听你把它具体说出来),好了现在的问题是根号2存在吗?“存在”的问题显然是个哲学问题!(证明存在可以有两种方法:找到它或从反面出发证明如果不存在会有矛盾,这里矛盾又是一个哲学概念!)当然我们已经知道根号2是存在的了(注意:你可以对此产生怀疑,但是万万不可否定)。还有中学学习数学的同学一定会被老师叮嘱各种数学思想,其实大多数数学思想就是哲学思想,比如函数思想里就蕴含了特殊与一般的联系、变化与静止的联系等等,函数的本质就是“变”。凡是涉及到本质或思想的东西,大都会和哲学搭上边,而我们总说的学好哲学能帮助我们认清事物的本质就是这个道理。
学了数学就会发现,有些东西是约定俗成的(1+1=2不是约定俗成,是可以证明的!)比如我们所说的公理,没有人去证明任何公理,因为公理约定俗成。好了,“约定俗成”这个词是不是听上去不太爽?什么搞科学也要约定俗成?!一点都不严谨嘛!那我们约定俗成地承认上帝是存在的好了。恩,确实是这样,哲学走到最后就要面临信仰的问题。说信仰并不是指“宗教信仰”,而是你约定了什么。比如中学学的几何大家对平行线是这么认识的:同一平面内的两条直线永不相交。没有人说为什么,但大家都这么用。你上了大学如果够幸运(或者足够不幸)地学到了非欧几何,那这句话就荒谬至极,当然三角形内角和也不再是180度,等等,什么什么?搞鬼啊,那之前念的书都是屎啊!呵呵,所以说要看你信仰什么。如果承认平行公理(信仰欧式几何),那么世界还是我们理解的那个世界;如果不承认平行公理(改而信仰非欧几何),世界会发生些变化,但这并不可怕,相对论的产生也依赖于此,世界只不过有些不同而已,更加多彩而已。如果我们把“信仰”广义地理解为“神学”的话,其实最上面的话也就无可厚非了。
呵呵,仅为本人浅见,欢迎大家讨论。
我是学数学的,发表下浅见:同意这种说法。(不过这句话出处不明,但肯定不是“三体”这本书)
物理是对客观世界的具体事物的数学描述。比如中学物理中的经典物理学有力学、光学什么的,外在世界能实实在在地感受到的东西,然后用一个数学公式来加以归纳总结。但是再往深层次研究,涉及到量子物理(物理世界的根本问题),这些东西客观世界无法感知,就不得不用纯抽象的数学来研究,所以许多理论物理学家的论文跟数学论文也没啥太大区别,基础数学中的量子群、李代数也经常被应用到物理当中来。所以说物理学的尽头是数学。
这里插一句,有的人把数学当做是物理化学等应用学科的工具,认为数学是好用的“奴隶”,这里我作为一个学数学的人提出严正抗议!数学和其他理科科学之前确实存在许多相容的地方(那是因为数学本身就是对它们最简洁最有效的描述),但是数学不仅仅是服务者,很多人会问:数学有什么用?的确,有的理论知识被研究出来,仅仅是因为体系的自我完备和相容,具体的应用前景还无法估测。打个比方,物理学家是唐僧,他到了印度取得真经就要往回走,因为目的已经达到;但是数学家可能到了西天他还要往前走,前面是什么?是不是还有我们不知道的新东西?很纯粹的探险者。你要问数学有什么用,你可能要问问你的后人。所以请不要单纯用功利化的眼光看待数学。
物理走到这里为止,接下来他就要把接力棒传给数学工作者了。因为前方的道路不是实实在在的,忽悠的说法是:脚下无路,胸中有路。因为数学就是抽象,抽象就是这个东西它什么都不是,但它又能代表很多很多东西。比如说1,你说它是1个苹果、1块饼干、1根香蕉?都不是,它就是1,一个符号而已。没学过数字的小朋友是无论如何也不会对1产生什么想法的,只有我们告诉他,我们用这个符号概括你说知的一切具有“1”的特征的东西,他才会对这个符号赋予意识。这是最简单的抽象,简单到我们都以为它很具体。(如果你问我1到底是什么?那要归结到集合论,简单说来我可以用一个特定的集合来定义1,我还可以用集合来定义所有的数字、运算等等,所以高中第一堂课,我们就学习集合,老师还说集合是数学的基础,就是因为无论什么你都能用集合来定义,当然一般人是不用纠结这个问题的。)这里我再插一句,有关哥德巴赫猜想的“1+1=2”,它也不是小学生所理解的加法。关于这个加法的证明任何一个学习过抽象代数或集合论的本科生都能给出。(有关哥德巴赫的具体内容,大家可以百度或谷歌一下,也是小学生可以理解的。)当数学的最初就跟哲学有着千丝万缕的联系,所以有人说哲学和数学是两种描述世界的方法,二者互通,也是有道理的。比如大家都熟悉的根号2,你说它是多少?1.414?差不多,但不是,1.414...恩,无限不循环小数对吧,好吧有这么一个数,你永远也无法准确说出它具体的数值(即使你巨牛无比永世长存地说出这个数值,也没有一个人能活着听你把它具体说出来),好了现在的问题是根号2存在吗?“存在”的问题显然是个哲学问题!(证明存在可以有两种方法:找到它或从反面出发证明如果不存在会有矛盾,这里矛盾又是一个哲学概念!)当然我们已经知道根号2是存在的了(注意:你可以对此产生怀疑,但是万万不可否定)。还有中学学习数学的同学一定会被老师叮嘱各种数学思想,其实大多数数学思想就是哲学思想,比如函数思想里就蕴含了特殊与一般的联系、变化与静止的联系等等,函数的本质就是“变”。凡是涉及到本质或思想的东西,大都会和哲学搭上边,而我们总说的学好哲学能帮助我们认清事物的本质就是这个道理。
学了数学就会发现,有些东西是约定俗成的(1+1=2不是约定俗成,是可以证明的!)比如我们所说的公理,没有人去证明任何公理,因为公理约定俗成。好了,“约定俗成”这个词是不是听上去不太爽?什么搞科学也要约定俗成?!一点都不严谨嘛!那我们约定俗成地承认上帝是存在的好了。恩,确实是这样,哲学走到最后就要面临信仰的问题。说信仰并不是指“宗教信仰”,而是你约定了什么。比如中学学的几何大家对平行线是这么认识的:同一平面内的两条直线永不相交。没有人说为什么,但大家都这么用。你上了大学如果够幸运(或者足够不幸)地学到了非欧几何,那这句话就荒谬至极,当然三角形内角和也不再是180度,等等,什么什么?搞鬼啊,那之前念的书都是屎啊!呵呵,所以说要看你信仰什么。如果承认平行公理(信仰欧式几何),那么世界还是我们理解的那个世界;如果不承认平行公理(改而信仰非欧几何),世界会发生些变化,但这并不可怕,相对论的产生也依赖于此,世界只不过有些不同而已,更加多彩而已。如果我们把“信仰”广义地理解为“神学”的话,其实最上面的话也就无可厚非了。
呵呵,仅为本人浅见,欢迎大家讨论。