悖论一二
希尔伯特旅馆悖论(Hilbert's paradox of Grand Hotel)
希尔伯特旅馆有无限个房间,并且每个房间都住了客人。一天来了一个新客人,旅馆老板说:“虽然我们已经客满,但你还是能住进来的。我让 1 号房间的客人搬到 2 号房间,2 号房间搬到 3 号房间⋯⋯n 号房间搬到 n+1 号房间,你就可以住进 1 号房间了。”又一天,来了无限个客人,老板又说:“不用担心,大家仍然都能住进来。我让 1 号房间的客人搬到 2 号房间,2 号搬到 4 号,3 号搬到 6 号⋯⋯n 号搬到 2n 号,然后你们排好队,依次住进奇数号的房间吧。”
托里拆利小号(Torricelli‘s Horn)
又到几何悖论时间了。上面这个小号状的图形有什么特点?
意大利数学家托里拆利(Evangelista Torricelli)将 y=1/x 中 x≥1 的部分绕着 x 轴旋转了一圈,得到了上面的小号状图形(注意,上图只显示了这个图形的一部分)。然后他算出了这个小号的一个十分牛 B 的性质——它的表面积无穷大,可它的体积却是 π。这明显有悖于人的直觉:体积有限的物体,表面积却可以是无限的!换句话说,填满整个托里拆利小号只需要有限的油漆,但把托里拆利小号的表面刷一遍,却需要无限多的油漆!
类似的二维几何悖论中,最著名的要属“科赫雪花”(Koch Snowflake)了。科赫雪花是一种经过无穷多次迭代生成的分形图形,下图就是前三次迭代的过程,迭代过程的极限便是科赫雪花了。它也有一个类似的性质:它的面积有限,周长却是无限的。用无限的周长包围了一块有限的面积,真是另类的“无中生有”啊!
芝诺悖论(Zeno's paradoxes)
阿基里斯与乌龟的悖论(Achilles and the tortoise Paradox):在跑步比赛中,如果跑得最慢的乌龟一开始领先跑得最快的希腊勇士阿基里斯,那么乌龟永远也不会被阿基里斯追上。因为要想追到乌龟,阿基里斯必须先到达乌龟现在的位置;而等阿基里斯到了这个位置之后乌龟已经又前进了一段距离。如此下去,阿基里斯永远追不上乌龟。
二分法悖论(Dichotomy Paradox):运动是不可能的。你要到达终点,必须首先到达全程的 1/2 处;而要到达 1/2 处,必须要先到 1/4 处⋯⋯每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。其实,你根本连动都动不了,运动是不可能的。
球与花瓶(Balls and Vase Problem)
我们有无限个球和一个花瓶,现在我们要对它们进行一系列操作。每次操作都是一样的:往花瓶里放 10 个球,然后取出 1 个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢?
有人或许会说,这个问题显然是荒谬的——这个过程需要耗费无穷的时间,我们不可能等到那个时候。那么,我们不妨换一个问法,避开所需时间无穷的问题:在差一分钟到正午 12 点时进行第 1 次操作,在差 30 秒(1/2 分钟)到正午 12 点时进行第 2 次操作,在差 1/2 n-1 分钟到 12 点时进行第 n 次操作。那么,12 点的时候,花瓶里有几个球呢?
看似简单的描述,经过数学家的解释,却出现了千奇百怪的答案。最直观的答案当然就是花瓶里有无限个球了,因为每次都增加了 9 个球,无限次之后,当然有无限个球。数学家 Allis 和 Koetsier 却不这么认为。他们认为,12 点时瓶子里没有球,因为我们第 1 次放进 1 至 10 号球,然后取出 1 号球,第 2 次放入 11 至 20 号球,然后取出 2 号球⋯⋯注意到,n 号球总是在第 n 次操作时被取出来了,因此无限操作下去,每个球都会被取出来!细心的读者会发现,这个说法也有问题:前面的证明假设我们取出的依次是 1 号球、2 号球、3 号球等等,如果我们改成依次取 10 号球、20 号球、30 号球,那么最后瓶子里又出现了无限个球了。哪种观点是正确的呢?于是逻辑学家詹姆斯·亨勒(James M. Henle)和托马斯·泰马祖科(Thomas Tymoczko)认为,花瓶里有任意个球。他们还给出了具体的构造方法,说明最终花瓶里的球可以是任意数目。
1953 年,这个悖论由英国数学家利特尔伍德(John Edensor Littlewood)在他的书《一个数学家的集锦》(A Mathematician‘s miscellany)中首先提出,1976 年谢尔登·罗斯(Sheldon Ross)在他的《概率论第一课》(A First Course in Probability)又一次介绍了这个问题,所以它又被称为“罗斯·利特尔伍德悖论”(Ross-Littlewood Paradox)。
无限长的杆(Infinite Rod)
有一张无限大的桌子,上面竖直地插着一根有限长的支柱。然后取一根无穷长的金属杆,把它的一头铰接在支柱顶端,另一头则伸向无穷远处。金属杆可以绕着支柱顶端自由地上下转动。假设金属杆和桌子都是无比坚硬的刚体。你会发现,这根无限长的金属杆根本不会往下转动!因为金属杆和桌子都很坚硬,如果它们相交,必然会损坏一个,所以唯一的办法就是金属杆与桌面平行。那么我们看到的现象就是一根无限长的金属杆,在空中仅仅靠一个点就保持水平!
这个有趣的问题是由数学家雷蒙德·斯穆里安(Raymond Smullyan)在一本庆祝马丁·加德纳 90 岁生日的书中介绍的。另外,如果我们把铰接的点移到金属杆的中部,那么金属杆就动弹不得,稳稳地和桌面平行了!
希尔伯特旅馆有无限个房间,并且每个房间都住了客人。一天来了一个新客人,旅馆老板说:“虽然我们已经客满,但你还是能住进来的。我让 1 号房间的客人搬到 2 号房间,2 号房间搬到 3 号房间⋯⋯n 号房间搬到 n+1 号房间,你就可以住进 1 号房间了。”又一天,来了无限个客人,老板又说:“不用担心,大家仍然都能住进来。我让 1 号房间的客人搬到 2 号房间,2 号搬到 4 号,3 号搬到 6 号⋯⋯n 号搬到 2n 号,然后你们排好队,依次住进奇数号的房间吧。”
托里拆利小号(Torricelli‘s Horn)
![]() |
又到几何悖论时间了。上面这个小号状的图形有什么特点?
意大利数学家托里拆利(Evangelista Torricelli)将 y=1/x 中 x≥1 的部分绕着 x 轴旋转了一圈,得到了上面的小号状图形(注意,上图只显示了这个图形的一部分)。然后他算出了这个小号的一个十分牛 B 的性质——它的表面积无穷大,可它的体积却是 π。这明显有悖于人的直觉:体积有限的物体,表面积却可以是无限的!换句话说,填满整个托里拆利小号只需要有限的油漆,但把托里拆利小号的表面刷一遍,却需要无限多的油漆!
![]() |
类似的二维几何悖论中,最著名的要属“科赫雪花”(Koch Snowflake)了。科赫雪花是一种经过无穷多次迭代生成的分形图形,下图就是前三次迭代的过程,迭代过程的极限便是科赫雪花了。它也有一个类似的性质:它的面积有限,周长却是无限的。用无限的周长包围了一块有限的面积,真是另类的“无中生有”啊!
芝诺悖论(Zeno's paradoxes)
阿基里斯与乌龟的悖论(Achilles and the tortoise Paradox):在跑步比赛中,如果跑得最慢的乌龟一开始领先跑得最快的希腊勇士阿基里斯,那么乌龟永远也不会被阿基里斯追上。因为要想追到乌龟,阿基里斯必须先到达乌龟现在的位置;而等阿基里斯到了这个位置之后乌龟已经又前进了一段距离。如此下去,阿基里斯永远追不上乌龟。
二分法悖论(Dichotomy Paradox):运动是不可能的。你要到达终点,必须首先到达全程的 1/2 处;而要到达 1/2 处,必须要先到 1/4 处⋯⋯每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。其实,你根本连动都动不了,运动是不可能的。
球与花瓶(Balls and Vase Problem)
我们有无限个球和一个花瓶,现在我们要对它们进行一系列操作。每次操作都是一样的:往花瓶里放 10 个球,然后取出 1 个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢?
有人或许会说,这个问题显然是荒谬的——这个过程需要耗费无穷的时间,我们不可能等到那个时候。那么,我们不妨换一个问法,避开所需时间无穷的问题:在差一分钟到正午 12 点时进行第 1 次操作,在差 30 秒(1/2 分钟)到正午 12 点时进行第 2 次操作,在差 1/2 n-1 分钟到 12 点时进行第 n 次操作。那么,12 点的时候,花瓶里有几个球呢?
看似简单的描述,经过数学家的解释,却出现了千奇百怪的答案。最直观的答案当然就是花瓶里有无限个球了,因为每次都增加了 9 个球,无限次之后,当然有无限个球。数学家 Allis 和 Koetsier 却不这么认为。他们认为,12 点时瓶子里没有球,因为我们第 1 次放进 1 至 10 号球,然后取出 1 号球,第 2 次放入 11 至 20 号球,然后取出 2 号球⋯⋯注意到,n 号球总是在第 n 次操作时被取出来了,因此无限操作下去,每个球都会被取出来!细心的读者会发现,这个说法也有问题:前面的证明假设我们取出的依次是 1 号球、2 号球、3 号球等等,如果我们改成依次取 10 号球、20 号球、30 号球,那么最后瓶子里又出现了无限个球了。哪种观点是正确的呢?于是逻辑学家詹姆斯·亨勒(James M. Henle)和托马斯·泰马祖科(Thomas Tymoczko)认为,花瓶里有任意个球。他们还给出了具体的构造方法,说明最终花瓶里的球可以是任意数目。
1953 年,这个悖论由英国数学家利特尔伍德(John Edensor Littlewood)在他的书《一个数学家的集锦》(A Mathematician‘s miscellany)中首先提出,1976 年谢尔登·罗斯(Sheldon Ross)在他的《概率论第一课》(A First Course in Probability)又一次介绍了这个问题,所以它又被称为“罗斯·利特尔伍德悖论”(Ross-Littlewood Paradox)。
无限长的杆(Infinite Rod)
有一张无限大的桌子,上面竖直地插着一根有限长的支柱。然后取一根无穷长的金属杆,把它的一头铰接在支柱顶端,另一头则伸向无穷远处。金属杆可以绕着支柱顶端自由地上下转动。假设金属杆和桌子都是无比坚硬的刚体。你会发现,这根无限长的金属杆根本不会往下转动!因为金属杆和桌子都很坚硬,如果它们相交,必然会损坏一个,所以唯一的办法就是金属杆与桌面平行。那么我们看到的现象就是一根无限长的金属杆,在空中仅仅靠一个点就保持水平!
这个有趣的问题是由数学家雷蒙德·斯穆里安(Raymond Smullyan)在一本庆祝马丁·加德纳 90 岁生日的书中介绍的。另外,如果我们把铰接的点移到金属杆的中部,那么金属杆就动弹不得,稳稳地和桌面平行了!